Edexcel Maths C3

Topic Questions from Papers

Trigonometry

(b) Solve, for $0 \leqslant \theta < 360^\circ$, the equation $2 \tan^2 \theta + \sec \theta = 1,$ giving your answers to 1 decimal place.	(6)
	(6)
giving your answers to 1 decimal place.	(6)
	(6)

5. (a) Using the identity $cos(A + B) \equiv cos A cos B - sin A sin B$, prove that

$$\cos 2A \equiv 1 - 2 \sin^2 A.$$

(2)

(b) Show that

$$2\sin 2\theta - 3\cos 2\theta - 3\sin \theta + 3 \equiv \sin \theta (4\cos \theta + 6\sin \theta - 3).$$

(4)

(c) Express $4 \cos \theta + 6 \sin \theta$ in the form $R \sin(\theta + \alpha)$, where R > 0 and $0 < \alpha < \frac{1}{2}\pi$.

(4)

(d) Hence, for $0 \le \theta < \pi$, solve

$$2 \sin 2\theta = 3(\cos 2\theta + \sin \theta - 1),$$

giving your answers in radians to 3 significant figures, where appropriate.

(5)

uestion 5 continued	l	blai

4		-	
ı	١	١	
4	u	,	٠

$$f(x) = 12 \cos x - 4 \sin x.$$

Given that $f(x) = R \cos(x + \alpha)$, where $R \ge 0$ and $0 \le \alpha \le 90^{\circ}$,

(a) find the value of R and the value of α .

(4)

(b) Hence solve the equation

$$12\cos x - 4\sin x = 7$$

for $0 \le x < 360^{\circ}$, giving your answers to one decimal place.

(5)

(c) (i) Write down the minimum value of $12 \cos x - 4 \sin x$.

(1)

(ii) Find, to 2 decimal places, the smallest positive value of x for which this minimum value occurs.

(2)

- 7. (a) Show that
 - (i) $\frac{\cos 2x}{\cos x + \sin x} \equiv \cos x \sin x, \quad x \neq (n \frac{1}{4})\pi, n \in \mathbb{Z},$

(2)

(ii) $\frac{1}{2}(\cos 2x - \sin 2x) \equiv \cos^2 x - \cos x \sin x - \frac{1}{2}$.

(3)

(b) Hence, or otherwise, show that the equation

$$\cos\theta \left(\frac{\cos 2\theta}{\cos\theta + \sin\theta}\right) = \frac{1}{2}$$

can be written as

$$\sin 2\theta = \cos 2\theta$$
.

(3)

(c) Solve, for $0 \le \theta < 2\pi$,

$$\sin 2\theta = \cos 2\theta$$
,

giving your answers in terms of π .

uestion 7 continued		
	_	

6. (a) Using $\sin^2\theta + \cos^2\theta = 1$, show that $\csc^2\theta - \cot^2\theta = 1$.

(2)

(b) Hence, or otherwise, prove that

 $\csc^4 \theta - \cot^4 \theta \equiv \csc^2 \theta + \cot^2 \theta$.

(2)

(c) Solve, for $90^{\circ} < \theta < 180^{\circ}$,

 $\csc^4\theta - \cot^4\theta = 2 - \cot \theta$.

(6)

- **8.** (a) Given that $\cos A = \frac{3}{4}$, where $270^{\circ} < A < 360^{\circ}$, find the exact value of $\sin 2A$. (5)
 - (-)

(b) (i) Show that $\cos\left(2x + \frac{\pi}{3}\right) + \cos\left(2x - \frac{\pi}{3}\right) = \cos 2x$.

(3)

Given that

$$y = 3\sin^2 x + \cos\left(2x + \frac{\pi}{3}\right) + \cos\left(2x - \frac{\pi}{3}\right),$$

(ii) show that $\frac{dy}{dx} = \sin 2x$.

	Leave blank
Question 8 continued	
	Q8
(Total 12 marks)	
TOTAL FOR PAPER: 75 MARKS	
END	

Lea	ve
hlar	ık

1. (a) By writing $\sin 3\theta$ as $\sin (2\theta + \theta)$, show that

 $\sin 3\theta = 3\sin \theta - 4\sin^3 \theta.$

(5)

(b) Given that $\sin \theta = \frac{\sqrt{3}}{4}$, find the exact value of $\sin 3\theta$.

(2)

5.

Figure 1 shows an oscilloscope screen.

The curve shown on the screen satisfies the equation

$$y = \sqrt{3}\cos x + \sin x.$$

(a) Express the equation of the curve in the form $y = R\sin(x + \alpha)$, where R and α are constants, R > 0 and $0 < \alpha < \frac{\pi}{2}$.

` '

(b) Find the values of x, $0 \le x < 2\pi$, for which y = 1.

stion 5 continued	
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_
	_

8. (i) Prove that

$$\sec^2 x - \csc^2 x = \tan^2 x - \cot^2 x.$$

(3)

(ii) Given that

$$y = \arccos x$$
, $-1 \leqslant x \leqslant 1$ and $0 \leqslant y \leqslant \pi$,

(a) express $\arcsin x$ in terms of y.

(2)

(b) Hence evaluate $\arccos x + \arcsin x$. Give your answer in terms of π .

(1)

Question 8 continued	l t
	Q
	(Total 6 marks)
	TOTAL FOR PAPER: 75 MARKS

- **6.** (a) Express $3 \sin x + 2 \cos x$ in the form $R \sin(x + \alpha)$ where R > 0 and $0 < \alpha < \frac{\pi}{2}$.
 - (b) Hence find the greatest value of $(3 \sin x + 2 \cos x)^4$.

(2)

(c) Solve, for $0 < x < 2\pi$, the equation

$$3\sin x + 2\cos x = 1,$$

giving your answers to 3 decimal places.

(5)

Question 6 continued	Leave blank

7. (a) Prove that

$$\frac{\sin \theta}{\cos \theta} + \frac{\cos \theta}{\sin \theta} = 2 \csc 2\theta, \qquad \theta \neq 90n^{\circ}.$$

(4)

(b) On the axes on page 20, sketch the graph of $y = 2 \csc 2\theta$ for $0^{\circ} < \theta < 360^{\circ}$.

(2)

(c) Solve, for $0^{\circ} < \theta < 360^{\circ}$, the equation

$$\frac{\sin\theta}{\cos\theta} + \frac{\cos\theta}{\sin\theta} = 3,$$

giving your answers to 1 decimal place.

(6)

Leave blank **Question 7 continued** 360° 90° 270° 180° 0

6. (a) Use the double angle formulae and the identity

$$cos(A+B) \equiv cos A cos B - sin A sin B$$

to obtain an expression for $\cos 3x$ in terms of powers of $\cos x$ only.

(4)

(b) (i) Prove that

$$\frac{\cos x}{1+\sin x} + \frac{1+\sin x}{\cos x} \equiv 2\sec x, \qquad x \neq (2n+1)\frac{\pi}{2}.$$

(4)

(ii) Hence find, for $0 < x < 2\pi$, all the solutions of

$$\frac{\cos x}{1+\sin x} + \frac{1+\sin x}{\cos x} = 4.$$

(3)

	Leave
	blank
Question 6 continued	

2.

$$f(x) = 5\cos x + 12\sin x$$

Given that $f(x) = R\cos(x - \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$,

(a) find the value of R and the value of α to 3 decimal places.

(4)

(b) Hence solve the equation

$$5\cos x + 12\sin x = 6$$

for $0 \leqslant x < 2\pi$.

(5)

(c) (i) Write down the maximum value of $5\cos x + 12\sin x$.

(1)

(ii) Find the smallest positive value of x for which this maximum value occurs.

(2)

	Leave
0	blank
Question 2 continued	

(a) Given that $\sin^2\theta + \cos^2\theta \equiv 1$, show that $1 + \cot^2\theta \equiv \csc^2\theta$.	(2)
	(=)
(b) Solve, for $0 \le \theta < 180^{\circ}$, the equation	
$2 \cot^2 \theta - 9 \csc \theta = 3,$	
giving your answers to 1 decimal place.	
	(6)

6. (a) (i) By writing $3\theta = (2\theta + \theta)$, show that

$$\sin 3\theta = 3\sin \theta - 4\sin^3\theta.$$

(4)

(ii) Hence, or otherwise, for $0 < \theta < \frac{\pi}{3}$, solve

$$8\sin^3\theta - 6\sin\theta + 1 = 0.$$

Give your answers in terms of π .

(5)

(b) Using $\sin(\theta - \alpha) = \sin\theta\cos\alpha - \cos\theta\sin\alpha$, or otherwise, show that

$$\sin 15^\circ = \frac{1}{4}(\sqrt{6} - \sqrt{2}).$$

Question 6 continued	blan

8. (a) Express $3 \cos \theta + 4 \sin \theta$ in the form $R \cos(\theta - \alpha)$, where R and α are constants, R > 0 and $0 < \alpha < 90^{\circ}$.

(4)

(b) Hence find the maximum value of $3\cos\theta + 4\sin\theta$ and the smallest positive value of θ for which this maximum occurs.

(3)

The temperature, f(t), of a warehouse is modelled using the equation

$$f(t) = 10 + 3\cos(15t)^{\circ} + 4\sin(15t)^{\circ}$$
,

where *t* is the time in hours from midday and $0 \le t < 24$.

(c) Calculate the minimum temperature of the warehouse as given by this model.

(2)

(d) Find the value of t when this minimum temperature occurs.

(3)

Question 8 continued		blank
		Q8
	(Total 12 marks)	
	TOTAL FOR PAPER: 75 MARKS	
	END	

6. (a) Use the identity $\cos(A+B) = \cos A \cos B - \sin A \sin B$, to show that

$$\cos 2A = 1 - 2\sin^2 A \tag{2}$$

The curves C_1 and C_2 have equations

$$C_1$$
: $y = 3\sin 2x$

$$C_2: \quad y = 4\sin^2 x - 2\cos 2x$$

(b) Show that the x-coordinates of the points where C_1 and C_2 intersect satisfy the equation

$$4\cos 2x + 3\sin 2x = 2\tag{3}$$

(c) Express $4\cos 2x + 3\sin 2x$ in the form $R\cos(2x - \alpha)$, where R > 0 and $0 < \alpha < 90^{\circ}$, giving the value of α to 2 decimal places.

(3)

(d) Hence find, for $0 \le x < 180^{\circ}$, all the solutions of

$$4\cos 2x + 3\sin 2x = 2$$

giving your answers to 1 decimal place.

Question 6 continued	blan

Solve		
	$\csc^2 2x - \cot 2x = 1$	
for $0 \leqslant x \leqslant 180^{\circ}$.		
		(7)

1. (a) Show that

$$\frac{\sin 2\theta}{1 + \cos 2\theta} = \tan \theta$$

(2)

(b) Hence find, for $-180^{\circ} \le \theta < 180^{\circ}$, all the solutions of

$$\frac{2\sin 2\theta}{1+\cos 2\theta} = 1$$

Give your answers to 1 decimal place.

(3)

7. (a) Express $2\sin\theta - 1.5\cos\theta$ in the form $R\sin(\theta - \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$.

(3)

(b) (i) Find the maximum value of $2\sin\theta - 1.5\cos\theta$.

Give the value of α to 4 decimal places.

(ii) Find the value of θ , for $0 \le \theta < \pi$, at which this maximum occurs.

(3)

Tom models the height of sea water, H metres, on a particular day by the equation

$$H = 6 + 2\sin\left(\frac{4\pi t}{25}\right) - 1.5\cos\left(\frac{4\pi t}{25}\right), \quad 0 \le t < 12,$$

where *t* hours is the number of hours after midday.

(c) Calculate the maximum value of H predicted by this model and the value of t, to 2 decimal places, when this maximum occurs.

(3)

(d) Calculate, to the nearest minute, the times when the height of sea water is predicted, by this model, to be 7 metres.

(6)

Question 7 continued	blank

January 2011	
	Leave blank
(6)	

		$2\cos 2\theta = 1 - 2\sin\theta$
	in the interval $0 \le \theta < 360^{\circ}$.	
	in the interval $0 \leqslant 0 \leqslant 500$.	
_		
_		
_		
_		

6. (a) Prove that

$$\frac{1}{\sin 2\theta} - \frac{\cos 2\theta}{\sin 2\theta} = \tan \theta, \quad \theta \neq 90n^{\circ}, \ n \in \mathbb{Z}$$

(4)

- (b) Hence, or otherwise,
 - (i) show that $\tan 15^\circ = 2 \sqrt{3}$,

(3)

(ii) solve, for $0 < x < 360^{\circ}$,

$$\csc 4x - \cot 4x = 1$$

(5)

	Leave blank
Question 6 continued	

Leave

$2\cot^2 3\theta = 7\csc 3\theta - 5$	
Give your answers in degrees to 1 decimal place.	
	(10)

6.

$$f(x) = x^2 - 3x + 2\cos(\frac{1}{2}x), \quad 0 \le x \le \pi$$

(a) Show that the equation f(x)=0 has a solution in the interval 0.8 < x < 0.9

(2)

The curve with equation y = f(x) has a minimum point P.

(b) Show that the x-coordinate of P is the solution of the equation

$$x = \frac{3 + \sin\left(\frac{1}{2}x\right)}{2} \tag{4}$$

(c) Using the iteration formula

$$x_{n+1} = \frac{3 + \sin\left(\frac{1}{2}x_n\right)}{2}, \quad x_0 = 2$$

find the values of x_1 , x_2 and x_3 , giving your answers to 3 decimal places.

(3)

(d) By choosing a suitable interval, show that the *x*-coordinate of *P* is 1.9078 correct to 4 decimal places.

(3)

		eave
	bl	lank
Question 6 continued		

8. (a) Starting from the formulae for sin(A+B) and cos(A+B), prove that

$$\tan\left(A+B\right) = \frac{\tan A + \tan B}{1 - \tan A \tan B} \tag{4}$$

(b) Deduce that

$$\tan\left(\theta + \frac{\pi}{6}\right) = \frac{1 + \sqrt{3}\tan\theta}{\sqrt{3 - \tan\theta}}$$
(3)

(c) Hence, or otherwise, solve, for $0 \le \theta \le \pi$,

$$1 + \sqrt{3} \tan \theta = (\sqrt{3} - \tan \theta) \tan (\pi - \theta)$$

Give your answers as multiples of π .

(6)

Question 8 continued		1
		_
	(Total 13 marks)	
TO	OTAL FOR PAPER: 75 MARKS	
END		

(a) Express $4\csc^2 2\theta - \csc^2 \theta$ in terms of $\sin \theta$ and $\cos \theta$. **(2)** (b) Hence show that $4\csc^2 2\theta - \csc^2 \theta = \sec^2 \theta$ **(4)** (c) Hence or otherwise solve, for $0 < \theta < \pi$, $4\csc^2 2\theta - \csc^2 \theta = 4$ giving your answers in terms of π . **(3)**

0
X.

$$f(x) = 7\cos 2x - 24\sin 2x$$

Given that $f(x) = R\cos(2x + \alpha)$, where R > 0 and $0 < \alpha < 90^{\circ}$,

(a) find the value of R and the value of α .

(3)

(b) Hence solve the equation

$$7\cos 2x - 24\sin 2x = 12.5$$

for $0 \le x < 180^{\circ}$, giving your answers to 1 decimal place.

(5)

(c) Express $14\cos^2 x - 48\sin x \cos x$ in the form $a\cos 2x + b\sin 2x + c$, where a, b, and c are constants to be found.

(2)

(d) Hence, using your answers to parts (a) and (c), deduce the maximum value of

$$14\cos^2 x - 48\sin x \cos x$$

(2)

	Leave blank
Question 8 continued	
	Q8
(Total 12 marks)	
TOTAL FOR PAPER: 75 MARKS	
END	

4. (a) Express $6\cos\theta + 8\sin\theta$ in the form $R\cos(\theta - \alpha)$, where R > 0 and $0 < \alpha < \frac{\pi}{2}$.

Give the value of α to 3 decimal places.

(4)

(b)
$$p(\theta) = \frac{4}{12 + 6\cos\theta + 8\sin\theta}, \quad 0 \le \theta \le 2\pi$$

Calculate

(i) the maximum value of $p(\theta)$,

(ii) the value of θ at which the maximum occurs.

	(-)

6. (i) Without using a calculator, find the exact value of

$$(\sin 22.5^{\circ} + \cos 22.5^{\circ})^{2}$$

You must show each stage of your working.

(5)

(ii) (a) Show that $\cos 2\theta + \sin \theta = 1$ may be written in the form

$$k \sin^2 \theta - \sin \theta = 0$$
, stating the value of k.

(2)

(b) Hence solve, for $0 \le \theta < 360^{\circ}$, the equation

$$\cos 2\theta + \sin \theta = 1$$

Question 6 continued	Leave blank

3.	$f(x) = 7\cos x + \sin x$
	Given that $f(x) = R\cos(x - \alpha)$, where $R > 0$ and $0 < \alpha < 90^{\circ}$,

(a) find the exact value of R and the value of α to one decimal place.

(3)

(b) Hence solve the equation

$$7\cos x + \sin x = 5$$

for $0 \le x < 360^{\circ}$, giving your answers to one decimal place.

(5)

(c) State the values of k for which the equation

$$7\cos x + \sin x = k$$

has only one solution in the interval $0 \le x < 360^{\circ}$

(2)

Overtion 2 continued	Leave blank
Question 3 continued	

5. (a) Differentiate

$$\frac{\cos 2x}{\sqrt{x}}$$

with respect to x.

(3)

(b) Show that $\frac{d}{dx}(\sec^2 3x)$ can be written in the form

$$\mu(\tan 3x + \tan^3 3x)$$

where μ is a constant.

(3)

(c) Given $x = 2\sin\left(\frac{y}{3}\right)$, find $\frac{dy}{dx}$ in terms of x, simplifying your answer.

Question 5 continued	I	Leave blank

6. (i) Use an appropriate double angle formula to show that

 $\csc 2x = \lambda \csc x \sec x$,

and state the value of the constant λ .

(3)

(ii) Solve, for $0 \le \theta \le 2\pi$, the equation

 $3\sec^2\theta + 3\sec\theta = 2\tan^2\theta$

You must show all your working. Give your answers in terms of π .

(6)

3. Given that

$$2\cos(x+50)^{\circ} = \sin(x+40)^{\circ}$$

(a) Show, without using a calculator, that

$$\tan x^{\circ} = \frac{1}{3} \tan 40^{\circ} \tag{4}$$

(b) Hence solve, for $0 \le \theta < 360$,

$$2\cos(2\theta + 50)^{\circ} = \sin(2\theta + 40)^{\circ}$$

giving your answers to 1 decimal place.

8.

Figure 2

Kate crosses a road, of constant width $7 \, \text{m}$, in order to take a photograph of a marathon runner, John, approaching at $3 \, \text{m s}^{-1}$.

Kate is 24 m ahead of John when she starts to cross the road from the fixed point A. John passes her as she reaches the other side of the road at a variable point B, as shown in Figure 2.

Kate's speed is $V \, \mathrm{m \, s^{-1}}$ and she moves in a straight line, which makes an angle θ , $0 < \theta < 150^{\circ}$, with the edge of the road, as shown in Figure 2.

You may assume that V is given by the formula

$$V = \frac{21}{24\sin\theta + 7\cos\theta}, \qquad 0 < \theta < 150^{\circ}$$

(a) Express $24\sin\theta + 7\cos\theta$ in the form $R\cos(\theta - \alpha)$, where R and α are constants and where R > 0 and $0 < \alpha < 90^{\circ}$, giving the value of α to 2 decimal places.

(3)

Given that θ varies,

(b) find the minimum value of V.

(2)

Given that Kate's speed has the value found in part (b),

(c) find the distance AB.

(3)

Given instead that Kate's speed is 1.68 m s⁻¹,

(d) find the two possible values of the angle θ , given that $0 < \theta < 150^{\circ}$.

(6)

Question 8 continued		Leav blanl
		Q
	(Total 14 marks)	
	TOTAL FOR PAPER: 75 MARKS	
END		

Core Mathematics C3

Candidates sitting C3 may also require those formulae listed under Core Mathematics C1 and C2.

Logarithms and exponentials

$$e^{x \ln a} = a^x$$

Trigonometric identities

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B} \qquad (A \pm B \neq (k + \frac{1}{2})\pi)$$

$$\sin A + \sin B = 2 \sin \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\sin A - \sin B = 2 \cos \frac{A + B}{2} \sin \frac{A - B}{2}$$

$$\cos A + \cos B = 2 \cos \frac{A + B}{2} \cos \frac{A - B}{2}$$

$$\cos A - \cos B = -2 \sin \frac{A + B}{2} \sin \frac{A - B}{2}$$

Differentiation

f(x) f'(x)
tan kx k sec² kx
sec x sec x tan x
cot x -cosec² x
cosec x -cosec x cot x

$$\frac{f(x)}{g(x)} \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2}$$

Core Mathematics C2

Candidates sitting C2 may also require those formulae listed under Core Mathematics C1.

Cosine rule

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Binomial series

$$(a+b)^{n} = a^{n} + \binom{n}{1} a^{n-1} b + \binom{n}{2} a^{n-2} b^{2} + \dots + \binom{n}{r} a^{n-r} b^{r} + \dots + b^{n} \quad (n \in \mathbb{N})$$

$$\text{where } \binom{n}{r} = {}^{n} C_{r} = \frac{n!}{r!(n-r)!}$$

$$(1+x)^{n} = 1 + nx + \frac{n(n-1)}{1 \times 2} x^{2} + \dots + \frac{n(n-1)\dots(n-r+1)}{1 \times 2 \times \dots \times r} x^{r} + \dots \quad (|x| < 1, n \in \mathbb{R})$$

Logarithms and exponentials

$$\log_a x = \frac{\log_b x}{\log_b a}$$

Geometric series

$$u_n = ar^{n-1}$$

$$S_n = \frac{a(1-r^n)}{1-r}$$

$$S_{\infty} = \frac{a}{1-r}$$
 for $|r| < 1$

Numerical integration

The trapezium rule:
$$\int_{a}^{b} y \, dx \approx \frac{1}{2} h\{(y_0 + y_n) + 2(y_1 + y_2 + ... + y_{n-1})\}$$
, where $h = \frac{b-a}{n}$

Core Mathematics C1

Mensuration

Surface area of sphere = $4\pi r^2$

Area of curved surface of cone = $\pi r \times \text{slant height}$

Arithmetic series

$$u_n = a + (n-1)d$$

$$S_n = \frac{1}{2}n(a+l) = \frac{1}{2}n[2a+(n-1)d]$$